Editorials
Материалы конференции
В статье обсуждается возможность использования биспектра при исследовании регулярного и хаотического поведения одномерных точечных отображений. Эффективность трансфера этого понятия в нелинейную динамику продемонстрирована на примере отображения Фейгенбаума. Также в работе рассмотрено применение энтропии Кульбака–Лейблера в теории точечных отображений. Показано, что эта величина информационного характера пригодна для описания поведения статистических ансамблей одномерных отображений. В рамках этой теории выявлены некоторые общие свойства её поведения. Конструктивизм энтропии Кульбака–Лейблера в теории точечных отображений показан также прямым её вычислением для отображения «зуб пилы» с линейным начальным распределением вероятностей. Кроме того, для этого отображения указано счётное множество начальных распределений вероятностей, попадающих в его стационарное распределение вероятностей за конечное число шагов.
На основе модифицированного асимптотического метода пограничных функций и асимптотического метода дифференциальных неравенств исследуется вопрос о существовании устойчивых по Ляпунову стационарных решений с внутренними слоями уравнения нелинейной теплопроводности в случае нелинейной зависимости мощности тепловых источников от температуры. Обсуждаются основные условия существования таких решений, построение асимптотического приближения решения произвольного порядка точности, алгоритм определения положения поверхности перехода, в окрестности которой локализован внутренний слой контрастной структуры, и обоснование формальных построений. Основная трудность связана с описанием поверхности перехода. Предлагается эффективный алгоритм определения положения поверхности перехода, который развивает наш подход в описании многомерных задач на более сложный случай сбалансированной нелинейности. Результат может быть использован для создания численного алгоритма, основанного на применении асимптотического анализа с целью построения пространственно-неоднородных сеток при описании внутреннего слоя решения. В качестве иллюстрации рассматривается задача на плоскости, которая позволяет визуализировать численные расчеты. Сравниваются численные и асимптотические решения нулевого порядка при различных значениях малого параметра.
Изучается динамика ассоциации, состоящей из трех одинаковых колебательных элементов. Структура связи между осцилляторами предполагается вещательной, т.е. один из элементов системы односторонним образом воздействует на два других, которые, в свою очередь, взаимодействуют друг с другом. Важным свойством связи между осцилляторами является наличие в ней запаздывания по времени, что, очевидным образом, часто встречается в приложениях. Изучаемая система моделирует ситуацию из популяционной динамики, когда популяции слабо связаны между собой, например, разделены географически. При этом одна из популяций может влиять на обе оставшиеся, которые в свою очередь способны влиять друг на друга, но не влияют на первую. Каждый отдельный осциллятор представлен логистическим уравнением с запаздыванием (уравнением Хатчинсона). В работе выполнен локальный асимптотический анализ данной системы в случае близости параметров осцилляторов к значениям, при которых происходит бифуркация Андронова–Хопфа, кроме того, предполагаются малыми коэффициенты связи в системе. В этой ситуации к нашей задаче применим известный метод нормальных форм, который позволяет свести изучение динамики системы в некоторой окрестности единичного состояния равновесия к системе обыкновенных дифференциальных уравнений на устойчивом интегральном многообразии. Для построенной нормальной формы найдены простейшие режимы, полученные с использованием симметрии задачи, и условия их устойчивости. С учетом полученных формул численно проанализированы фазовые перестройки, происходящие в системе. Показано, что запаздывание в цепи связи осцилляторов существенно влияет на качественное поведение решений системы.
Работа направлена на исследование решений типа фронта для нелинейной системы параболических уравнений в двумерной области. Систему можно рассматривать как математическую модель, описывающую резкое изменение физических характеристик в пространственно неоднородных средах. Система уравнений содержит малые параметры в разных степенях при дифференциальном операторе, что означает различие характерных скоростей протекания процессов для каждой из компонент. Исследование проведено с помощью методов теории контрастных структур, что позволило получить условия существования решения типа фронта, локализованного в окрестности замкнутой кривой, определить зависимость скорости фронта от времени, получить асимптотическое приближение решения нулевого и первого порядков по малому параметру. Приближенное решение позволяет подобрать параметры модели таким образом, чтобы результат соответствовал наблюдаемым процессам, объяснять и описывать особенности решений с резкими градиентами, создавать модели, обладающие устойчивыми решениями, тем самым облегчая задачу получения численных результатов. Известно, что численный эксперимент для пространственно двумерных моделей требует значительных вычислительных мощностей, применения методов параллельного программирования и не позволяет эффективно анализировать и модифицировать модели. В данной работе получено асимптотическое приближение решения, требующее обоснования, которое может быть проведено по методу дифференциальных неравенств. Метод дифференциальных неравенств в данном случае предполагает построение верхнего и нижнего решений задачи на основе асимптотики. Область применения математической модели – описание автоволновых решений в задачах экологии, биофизики, физики горения, химической кинетики.
Исследована сингулярно возмущенная периодическая по времени задача для параболического уравнения реакция-адвекция-диффузия со слабой линейной адвекцией. Рассмотрен случай реактивного члена в виде кубической нелинейности. На основе уже известных результатов исследуется более общая постановка задачи, причем предоставляются более слабые достаточные условия для существования решения с внутренним переходным слоем, чем в предыдущих работах. Для удобства приводятся уже известные результаты, обеспечивающие выполнение теоремы существования контрастной структуры. Обоснование существования решения с внутренним переходным слоем базируется на использовании асимптотического метода дифференциальных неравенств, основанного на модификации членов построенного асимптотического разложения. Далее устанавливаются достаточные условия для выполнения указанных требований, причем они имеют простые и лаконичные формулировки в виде алгебраического уравнения w(x0,t) = 0 и условия wx(x0,t) < 0, по существу являющегося условием того, что корень x0(t) простой, и обеспечивающего устойчивость найденного решения. Функция w является функцией от известных функций, фигурирующих в реактивном и адвективном членах исходной задачи. Уравнение w(x0,t) = 0 представляет собой задачу для нахождения нулевого приближения x0(t) для определения области локализации внутреннего переходного слоя. Кроме того, исследована асимптотическая устойчивость по Ляпунову найденного периодического решения, основанная на применении метода так называемых сжимающихся барьеров. Основной результат работы сформулирован в виде теоремы.
Рассматривается проблема многокомпонентного расширения (2+1)D-калибровочной топологической модели Jackiw–Pi, описывающей нелинейную квантовую динамику заряженных частиц в многослойных системах Холла. Применяя размерную редукцию (2 + 1)D → (1+1)D к лагранжианам с топологическими полями Черна–Саймонса, мы построили многокомпонентные нелинейные уравнения Шредингера для частиц с учетом их взаимодействия. Используя метод Хироты, получили точное двухсолитонное решение, представляющее интерес для квантовых систем передачи информации в силу устойчивости их распространения. Асимптотический t →±∞ анализ солитон-солитонных взаимодействий показывает, что процессов обратного рассеяния нет. Мы отождествляем эти решения с краевыми (топологически защищенными) состояниями – киральными солитонами – в многослойных квантовых системах Холла. Применяя билинейную операторную алгебру Хироты и теорему тока, мы показали, что в отличие от обычных векторных солитонов динамика новых решений (киральных векторных солитонов) имеет исключительно однонаправленное движение. Статья публикуется в авторской редакции.
Оригинальные статьи
Пусть \(n\in{\mathbb N}\), \(Q_n=[0,1]^n\). Для невырожденного симплекса
\(S\subset{\mathbb R}^n\) через \(\sigma S\) обозначим образ \(S\) при гомотетии относительно центра тяжести с коэффициентом \(\sigma.\)
Положим \(\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\}.\)
Величину \(\xi(S)\) будем называть коэффициентом поглощения куба \(Q_n\) симплексом \(S\). В статье приводятся новые оценки для минимального коэффициента поглощения для симплекса, содержащегося в \(Q_n\), т.е. величины \(\xi_n=\min \{ \xi(S): , S\subset Q_n \}.\) Эта величина и её аналоги, в частности, имеют приложения при оценивании
норм интерполяционных проекторов. Общие оценки \(\xi_n\) были ранее получены в работах первого автора.
Всегда \(n\leq\xi_n< n+1\). Если существует матрица Адамара порядка \(n+1\), то \(\xi_n=n\).
Лучшая из известных общих оценок сверху имеет вид \(\xi_n\leq \frac{n^2-3}{n-1}\) \((n>2)\).
Cуществует не зависящая от \(n\) константа \(c>0\), такая что для любого симплекса \(S\subset Q_n\), имеющего максимальный объём, выполняются неравенства \(c\xi(S)\leq \xi_n\leq \xi(S)\). Это мотивиpует применение для оценивания \(\xi_n\) сверху симплексов максимального объёма в \(Q_n\). Для построения набора вершин такого симплекса могут применяться максимальный \(0/1\)-определитель порядка \(n\) или максимальный \(-1/1\)-определитель порядка \(n+1\). В работе вычисляются коэффициенты поглощения для симплексов максимального объёма, построенных с использованием специальной процедуры из известных максимальных \(-1/1\)-определителей.
Для ряда значений \(n\) c помощью этого подхода удалось понизить верхние границы \(\xi_n\), полученные теоретическим путём.
Приводятся лучшие известные оценки \(\xi_n\) cверху для \(n\leq 118\).
ISSN 2313-5417 (Online)