Оригинальные статьи
В работе рассматривается задача о числе решетчатых разбиений плоскости на центрально–симметричные полимино заданной площади. Полимино представляет собой связную фигуру на плоскости, составленную из конечного числа единичных квадратов, примыкающих друг к другу по сторонам. В настоящее время активно исследуются различные перечислительные комбинаторные задачи, связанные с полимино. Представляет интерес подсчет числа полимино определенных классов, а также подсчет числа разбиений конечных фигур или плоскости на полимино определенного типа. В частности, разбиение называется решетчатым, если любую фигуру разбиения можно перевести в любую другую фигуру параллельным переносом, переводящим все разбиение в себя. Ранее нами было доказано, что если T(n) – число решетчатых разбиений плоскости на полимино площади n, то справедливы неравенства 2 n−3 + 2[ n−3 2 ] ≤ T(n) ≤ C(n + 1)3 (2, 7)n+1 . В настоящей работе мы получаем аналогичную оценку для числа решетчатых разбиений, дополнительно обладающих центральной симметрией. Пусть Tс(n) – число решетчатых разбиений плоскости на центрально–симметричные полимино площади n, решетка периодов которых является подрешеткой решетки Z 2 . В работе доказано, что C1( √ 2)n ≤ Tс(n) ≤ C2n 2 ( √ 2.68)n . При доказательстве нижней оценки исполь- зована явная конструкция, позволяющая построить требуемое число решетчатых разбиений плоскости. Доказательство верхней оценки основано на критерии существования решетчатого разбиения плоскости на полимино, а также на теории самонепересекающихся блужданий на квадратной решетке.
ISSN 2313-5417 (Online)