Preview

Modeling and Analysis of Information Systems

Advanced search

Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-diffusion-advection Equation

https://doi.org/10.18255/1818-1015-2017-3-322-338

Abstract

This  work develops  a theory  of the  asymptotic-numerical investigation of the  moving fronts  in reaction-diffusion-advection models.  By considering  the  numerical  solution  of the  singularly perturbed Burgers’s  equation  we discuss a method  of dynamically  adapted mesh  construction that is able to significantly  improve  the  numerical  solution  of this  type of equations.  For  the  construction we use a priori information that is based  on the  asymptotic analysis  of the  problem.  In  particular, we take  into account the information about  the speed of the transition layer, its width  and structure. Our algorithms  are able to reduce significantly complexity and enhance stability of the numerical  calculations in comparison  with classical approaches for solving this class of problems.  The numerical  experiment is presented to demonstrate the effectiveness of the proposed  method.

The article  is published  in the authors’  wording.

 

About the Authors

Dmitry V. Lukyanenko
Lomonosov Moscow State University
Russian Federation

PhD, Faculty of Physics.

1, bld.  2 Leninskiye Gory, Moscow,  GSP-1, 119991



Vladimir T. Volkov
Lomonosov Moscow State University
Russian Federation

PhD, Faculty of Physics.

1, bld.  2 Leninskiye Gory, Moscow,  GSP-1, 119991



Nikolay N. Nefedov
Lomonosov Moscow State University
Russian Federation

professor, Dr.  Sci.,Faculty of Physics.

1, bld.  2 Leninskiye Gory, Moscow,  119991



References

1. V. T. Volkov, N. N. Nefedov, “Asymptotic-numerical investigation of generation and motion of fronts in phase transition models”, Lecture Notes in Computer Science, 8236 (2013), 524–531.

2. V. T. Volkov, N. E. Grachev, N. N. Nefedov, A. N. Nikolaev, “On the formation of sharp transition layers in two-dimensional reaction-diffusion models”, Comput. Math. and Math. Phys., 47:8 (2007), 1301–1309.

3. E. A. Antipov, N. T. Levashova, N. N. Nefedov, “Asymptotics of the front motion in the reaction-diffusion-advection problem,”, Comput. Math. and Math. Phys., 54:10 (2014), 1536–1549.

4. A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin, A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff, differential algebraic systems”, Comput. Math. and Math. Phys., 46:8 (2006), 1320–1340.

5. G.I. Shishkin, “Necessary conditions for ε-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers”, Comput. Math. and Math. Phys., 47:10 (2007), 1636–1655.

6. G. I. Shishkin, L. P. Shishkina, P. W. Hemker, “A Class of Singularly Perturbed Convection-Diffusion Problems with a Moving Interior Layer. An a Posteriori Adaptive Mesh Technique”, Comput. Meth. Appl. Math., 4:1 (2004), 105–127.

7. G.I. Shishkin, “Grid Approximation of a Singularly Perturbed Parabolic Equation on a Composed Domain with a Moving Interface Containing a Concentrated Source”, Comput. Math. and Math. Phys., 43 (2003), 1738–1755.

8. G.I. Shishkin, “Grid approximation of a singularly perturbed quasilinear equation in the presence of a transition layer”, Russian Acad. Sci. Dokl. Math., 47:1 (1993), 83–88.

9. J. Quinn, “A numerical method for a nonlinear singularly perturbed interior layer problem using an approximate layer location”, Journal of Computational, Applied Mathematics, 290 (2015), 500–515.

10. E. O’Riordan, J. Quinn, “Numerical method for a nonlinear singularly perturbed interior layer problem”, Lecture Notes in Computational Science and Engineering, 81 (2011), 187–195.

11. E. O’Riordan, J. Quinn, “Parameter-uniform numerical method for some linear, nonlinear singularly perturbed convection-diffusion boundary turning point problems”, BIT Numerical Mathematics, 51:2 (2011), 317–337.

12. N. Kopteva, M. Stynes, “Stabilised approximation of interior-layer solutons of a singularly perturbed semilinear reaction-diffusion problem”, Numerische Mathematik, 119:4 (2011), 787–810.

13. N. Kopteva, “Numerical analysys of a 2d singularly perturbed semilinear reaction-diffusion problem”, Lecture Notes in Computer Science, 5434 (2009), 80–91.

14. S. Franz, N. Kopteva, “Green’s function estimates for a singularly perturbed convectiondiffusion problem”, J. Differential Equations, 252 (2012), 1521–1545.

15. E. O’Riordan, G.I. Shishkin, “Singularly perturbed parabolic problems with non-smooth data”, J. of Computational, Applied Mathematics, 1 (2004), 233–245.

16. P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Robust computational techniques for boundary layers, Chapman, Hall/CRC, 2000.

17. P.A. Farrell, E. O’Riordan, G.I. Shishkin, “A class of singularly perturbed semilinear differential equations with interior layers”, Mathematics of Computation, 74:252 (2005), 1759–1776.

18. Natalia Kopteva, Eugene O’Riordan, “Shishkin meshes in the numerical solution of singularly perturbed differential equations”, International Journal of Numerical Analysis, Modeling, 1:1 (2009), 1–18.

19. V. T. Volkov, N. N. Nefedov, E. A. Antipov, “Asymptotic-Numerical Method for Moving Fronts in Two-Dimensional R-D-A Problems”, Lecture Notes in Computer Science, 9045 (2015), 408–416.

20. N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, B. V. Rogov, Computations on QuasiUniform Grids, Fizmatlit, Moscow, 2005, (in Russian).


Review

For citations:


Lukyanenko D.V., Volkov V.T., Nefedov N.N. Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-diffusion-advection Equation. Modeling and Analysis of Information Systems. 2017;24(3):322-338. https://doi.org/10.18255/1818-1015-2017-3-322-338

Views: 9819


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)