Preview

Моделирование и анализ информационных систем

Расширенный поиск

О бифуркациях при малых возмущениях в логистическом уравнении с запаздыванием

https://doi.org/10.18255/1818-1015-2017-2-168-185

Аннотация

В статье рассматриваются бифуркационные задачи для логистического уравнения с запаздыванием при наличии малых возмущений. Наиболее интересны результаты для случая, когда малые возмущения содержат большое запаздывание. В качестве основных результатов получены специальные нелинейные эволюционные нормальной формы уравнения, нелокальная динамика которых определяет поведение решений исходного уравнения в малой окрестности состояния равновесия или цикла. Как оказывается, принципиальное значение имеет порядок величины большого запаздывания. Для наиболее простого случая, когда этот порядок совпадает с величиной, обратной к фигурирующему в уравнении малому параметру, нормальная форма представляет собой комплексное уравнение с запаздыванием. В том случае, когда порядок коэффициента запаздывания еще выше, в качестве нормальной формы выступает многопараметрическое семейство специальных краевых задач вырожденно-параболического типа. Все это позволяет сделать вывод о том, что в рассматриваемых задачах с большим запаздыванием характерно явление мультистабильности.

Об авторе

Сергей Александрович Кащенко
Ярославский государственный университет им. П.Г. Демидова
Россия

д-р физ.-мат. наук, профессор

ул. Советская, 14, г. Ярославль, 150003 Россия



Список литературы

1. Wright E. M., “A non-linear difference-differential equation”, Journal fuЁr die reine und angewandte Mathematik, 194 (1955), 66–87.

2. Kakutani S., Markus L., “On the non-linear difference-differential equation y⴬(t) = (a − by(t − τ))y(t)”, Contributions to the Theory of Nonlinear Oscillations, 4, ed. S. Lefschetz, Princeton University Press, Princeton, 1958, 1–18, Annals of Mathematical Studies (AM-41).

3. К вопросу об оценке в пространстве параметров области глобальной устойчивости уравнения Хатчинсона, Нелинейные колебания в задачах экологии, ЯрГУ, Ярославль, 1985, 55–62; [Kashchenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoy ustoychivosti uravneniya Khatchinsona”, Nelineynye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62, (in Russian).]

4. Jones G. S., “The existence of periodic solutions of f⴬(x) = −αf(x−1)[1+f(x)]”, Journal of Contemporary Mathematical Analysis, 5 (1962), 435–450.

5. Кащенко С.А., “Сложные стационарные режимы одного дифференциально-разностного уравнения, обобщающего уравнение Хатчинсона”, Исследования по устойчивости и теории колебаний, ЯрГУ, Ярославль, 1983, 8; [Kashchenko S.A., “Slozhnye statsionarnye rezhimy odnogo differentsialno-raznostnogo uravneniya, obobshchayushchego uravnenie Khatchinsona”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1983, 8, (in Russian).]

6. Кащенко С.А., “О периодических решениях уравнения x⴬(t) = −lx(t − 1)[1 + x(t)]”, Исследования по устойчивости и теории колебаний, ЯрГУ, Ярославль, 1978, 110–117; [Kashchenko S. A., “O periodicheskikh resheniyakh uravneniya x⴬(t) = −lx(t−1)[1+x(t)]”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1978, 110–117, (in Russian).]

7. Кащенко С.А., “Асимптотика периодического решения обобщённого уравнения Хатчинсона”, Исследования по устойчивости и теории колебаний, ЯрГУ, Ярославль, 1981; [Kashchenko S. A., “Asimptotika periodicheskogo resheniya obobshchennogo uravneniya Khatchinsona”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1981, (in Russian).]

8. Kashchenko S., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sciences, 47:7 (2013), 470–494.

9. Hale J. K., Theory of functional differential equations, Springer Verlag, New York, 1977, 626 pp.

10. Hartman P., Ordinary Differential Equations, Wiley, New York, 1965, 626 pp.

11. Кащенко С.А., “Бифуркации в окрестности цикла при малых возмущениях с большим запаздыванием”, Журнал вычислительной математики и математической физики, 40:5 (2000), 693–702; English transl.: Kashchenko S. A., “Bifurcations in the neighborhood of a cycle under small perturbations with a large delay”, Comput. Math. Math. Phys., 40:5 (2000), 659–668.

12. Kashchenko S. A., “Bifurcational Features in Systems of Nonlinear Parabolic Equations with Weak Diffusion”, International Journal of Bifurcation and Chaos, 15:11 (2005), 3595– 3606.

13. Кащенко С.А., “Применение метода нормализации к изучению динамики дифференциально-разностных уравнений с малым множителем при производной”, Дифференциальные уравнения, 25:8 (1989), 1448–1451; English transl.: Kashchenko S. A., “Application of the normalization method to the study of the dynamics of a differential- difference equation with a small factor multiplying the derivative”, Differ. Uravn., 25:8 (1989), 1448–1451.

14. Кащенко И.С., “Асимптотический анализ поведения решений уравнения с большим запаздыванием”, Доклады РАН, 421:5 (2008), 586–589; [Kashchenko I. S., “Asymptotic analysis of the behavior of solutions to equations with large delay”, Doklady Mathematics, 78:1 (2008), 570–573, (in Russian).]

15. Кащенко И.С., “Локальная динамика уравнений с большим запаздыванием”, Журнал вычислительной математики и математической физики, 48:12 (2008), 2141–2150; English transl.: Kashchenko I. S., “Local dynamics of equations with large delay”, Comput. Math. Math. Phys., 48:12 (2008), 2172–2181.

16. Кащенко С.А., “Уравнение Гинзбурга 퍨 Ландау 퍨 нормальная форма для дифференциально-разностного уравнения второго порядка с большим запаздыванием”, Журнал вычислительной математики и математической физики, 38:3 (1998), 457–465; English transl.: Kashchenko S. A., “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Comput. Math. Math. Phys., 38:3 (1998), 443–451.

17. Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г., Нестационарные структуры и диффузионный хаос, Наука, М., 1992, 544 с.; [Akhromeeva T. S., Kurdyumov S. P., Malinetskiy G. G., Nestatsionarnye struktury i diffuzionnyy khaos, Nauka, M., 1992, 544 pp., (in Russian).]

18. Aranson I. S., Kramer L., “The world of the complex Ginzburg–Landau equation”, Reviews of Modern Physics, 74:1 (2002), 99–143.

19. Кудряшов Н.А., Методы нелинейной математической физики, МИФИ, М., 2008, 352 с.; [Kudryashov N. A., Metody nelineynoy matematicheskoy fiziki, MIFI, M., 2008, 352 pp., (in Russian).]

20. Кащенко А.А., “Устойчивость бегущих волн в уравнении Гинзбурга ᰠ Ландау с малой диффузией”, Моделирование и анализ информационных систем, 18:3 (2011), 58–62; [Kashchenko A. A., “Analysis of running waves stability in the Ginzburg–Landau equation with small diffusion”, Model. Anal. Inform. Sist., 18:3 (2011), 58–62, (in Russian).]

21. Kashchenko A. A., “Analysis of Running Waves Stability in the Ginzburg–Landau Equation with Small Diffusion”, Automatic Control and Computer Sciences, 49:7 (2015), 514–517.


Рецензия

Для цитирования:


Кащенко С.А. О бифуркациях при малых возмущениях в логистическом уравнении с запаздыванием. Моделирование и анализ информационных систем. 2017;24(2):168-185. https://doi.org/10.18255/1818-1015-2017-2-168-185

For citation:


Kashchenko S.A. About Bifurcations at Small Perturbations in a Logistic Equation with Delay. Modeling and Analysis of Information Systems. 2017;24(2):168-185. (In Russ.) https://doi.org/10.18255/1818-1015-2017-2-168-185

Просмотров: 9179


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)