A Generalized Solution of an Initial Boundary Value Problem Arising in the Mechanics of Discrete-Continuous Systems
https://doi.org/10.18255/1818-1015-2012-1-84-96
Abstract
In this paper we define a generalized solution of an initial boundary value problem for a linear system of differential equations with one ordinary differential equation and two partial differential equations (a hybrid system of differential equations). We have proved the existence theorem for a generalized solution, its uniqueness, the correctness of the problem. An analytical formula for the solution is found. Such a system of differential equations arises in the study of discrete-continuum mechanical systems.
About the Authors
E. P. KubyshkinRussian Federation
д-р физ.-мат. наук, профессор кафедры математического моделирования
O. A. Khrebtyugova
Russian Federation
аспирант
References
1. Кубышкин Е.П. Уравнения движения одной механической системы, моделирующей динамику манипуляционного робота // Математика, кибернетика, информатика: труды международной научной конференции памяти А.Ю. Левина. Ярославль, ЯрГУ, 2008. C. 100 – 113.
2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1972. 496 с.
Review
For citations:
Kubyshkin E.P., Khrebtyugova O.A. A Generalized Solution of an Initial Boundary Value Problem Arising in the Mechanics of Discrete-Continuous Systems. Modeling and Analysis of Information Systems. 2012;19(1):84-96. (In Russ.) https://doi.org/10.18255/1818-1015-2012-1-84-96